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Stability of the parallel flow of a fluid over 
a slightly heavier fluid 

By ROBIN E. ESCH 
Computation Laboratory, Harvard University 

(Received 26 February 1960 and in revised form 10 July 1961) 

The incompressible, inviscid, parallel flow of a layer of fluid over a slightly denser 
fluid, in the presence of gravity, is investigated for stability. Two idealized piece- 
wise-linear steady velocity profiles are examined analytically, and a comparison 
with related experimental results is made. 

The dimensionless parameter U/(gh) i ,  where U is flow velocity, g the accelera- 
tion of gravity, and h the thickness of the upper layer, appears to have a critical 
value between 0.2 and 0.7, below which stable flows can persist. At the onset of 
instability disturbances of wavelength about h or 2h are predicted, with more 
violent disturbances of longer wavelength occurring at higher values of U/(gh)i. 
For continuous steady velocity profiles this instability phenomenon is found to 
be relatively insensitive to the ratio of the densities of the two fluids. 

1. Introduction 
Certain interesting and important physical situations involve the flow of a 

stream of fluid through a larger body of fluid. An example is the flow of a river 
into an estuary. Here the slightly higher density of salt water in the estuary 
tends to make the fresh river water remain on top. Another example is the flow 
of organic or radioactive wastes through a detainer tank. If dead regions of 
fluid form in such a tank, its effective size can be much reduced, with unfortunate 
consequences. Other oceanographic or meteorological examples can be found. 

The detailed motion in such situations is usually complex. However, two 
opposite types of behaviour can be distinguished: either the fluid all mixes up 
together in a turbulent manner, or a motionless region of fluid is observed, past 
which the fluid flows in a stream. 

The classical mathematical approach to such problems is of course parallel- 
flow stability analysis, discussed at length by Lin (1955), and perhaps first 
employed by Rayleigh (1945, pp. 385 et seq.) and Helmholtz (see Lamb 1945, 
pp. 373 et seq.). This approach postulates a steady (i.e. time-independent) parallel 
flow, and determines whether or not superimposed infinitesimal time-dependent 
disturbances can grow. 

Following this technique, we might attempt to gain insight into the physical 
situations of interest by considering the following already much idealized 
two-dimensional problem, as indicated in figure I (a). 

Gravity acts in the -y-direction. An air-water interface occurs at y = h, 
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and another interface between two regions of water of slightly different densities 
occurs a t  y = 0, the higher density being below, so that 

0 Y > h ,  
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FIGURE 1 c. Shear-layer profile. 
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FIGURE 1 b. Discontinuous profile. 
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FIGURE 1 d. Discontinuous profile. 

where pa/pb is slightly less than unity. A steady current in the x-direction, given 
by V(y) and with magnitude characterized by U, is present as pictured in 
figure 1 (a). 

An infinitesimal ‘disturbance’ velocity field [u(x, y, t ) ,  w(x, y ,  t ) ,  01 is assumed 
to be superimposed on this steady flow field. The infinitesimal velocity com- 
ponents u and v are assumed to be of the formf(y) eie(z-ct). The stability analysis 
wouldnow consist of determiningc, andnotingunderwhat conditionsits imaginary 
part is positive, corresponding to a growing infinitesimal disturbance. Ideally 
we should also investigate the completeness of the resulting set of disturbance 
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modes, and verify that any disturbance modes not included in the analysis can 
legitimately be ignored in stability considerations ; physical arguments, and 
experimental and theoretical results in similar problems, seem to indicate that 
this is indeed the case (Lin 1955). 

The quantity c, which plays the role of an eigenvalue, is a function of the 
parameters of the problem h, U and p,/p,, and of the disturbance wave-number a. 
The important physical mechanisms of the problem are: (i) the strong stabilizing 
influence of the large density change at the upper interface; (ii) the weak stabil- 
izing influence of the small density change at the lower interface; (iii) the 
destabilizing influence of the shearing parallel flow, which results in the pheno- 
menon called Helmholtz instability. 

Previous investigations (Esch 1957) indicated that (in contrast to the situation 
with solidly bounded flows) in stability analysis of a parallel flow where solid 
boundaries are effectively absent, inviscid-theory results apply to a good degree 
of approximation down to fairly small Reynolds number, the major effect of 
viscosity above this Reynolds number being through its influence on the velocity 
profile of a possible steady flow. (Specifically, this was found to be true for aR 
greater than about 100, where R is a Reynolds number and a a dimensionless 
disturbance wave-number.) Furthermore, stability results were found to be 
insensitive to minor changes in the velocity profile, when the wavelength of 
important disturbance modes is long compared to the extent of the region in 
which change is made. 

With this encouragement, further severe simplifications were made which 
reduce the problem to one which is readily soluble. It was hoped that the 
essential physical mechanisms were retained, so that some conclusions could be 
drawn about the more realistic problem pictured in figure 1 (a). Viscosity was 
neglected throughout. First the discontinuous projile shown in figure 1 ( b )  was 
treated; this is the type of flow originally considered by Helmholtz (see Lamb 
1945, p. 373), complicated by having unequal densities on either side of the 
lower interface, and by the presence of the upper interface. The discontinuity 
in tangential velocity is of course objectionable on physical grounds, and leads 
to unrealistic mathematical results at large disturbance wave-numbers. (It 
was more convenient for algebraic reasons to treat the profile of figure 1 ( d ) ,  
which is physically the same as that of figure 1 (b ) ,  being the same flow viewed 
from a moving co-ordinate system; this merely results in shifting the eigen- 
values c by an additive real constant.) Secondly, the physically more reasonable 
profile shown in figure 1 ( c )  was treated; this profile will be called the shear-layer 
projile. 

Bjerknes, Bjerknes, Solberg & Bergeron (1933, article 107) have derived the 
eigenvalue equation for the discontinuous profile, without extracting roots. 
Godske, Bergeron, Bjerknes & Bundgaard (1957, chapter 10) further discuss 
models of this type, in the context of meteorology. Goldstein (1931) and Taylor 
(1931), and more recently Drazin (1958) and Menkes (1959), have investigated 
related problems involving shear layers between unbounded flows, with vertical 
variation of density; the problem considered here differs through the presence 
of the strongly stable upper free surface. 
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2. Discontinuous profile calculations and results 
The parameters h and U will be used as reference length and velocity; thus, 

now indicating dimensional variables by asterisks, we define dimensionless 
variables as follows : 

x = X*/h, V = Y*/U, I 

i u = u*/u, P = p*/po, 

t = ( U p )  t*, p = p*/(po UZ). 

An arbitrary reference density po has also been introduced, for future con- 
venience. The driving mechanism will enter the problem through the dimen- 
sionless parameter 

G = gh/U2. (1') 

Within any region where viscosity is negligible, flow is irrotational, so that a 
scalar velocity potential $ exists, density is constant, and the only body force 
is gravity acting in the negative y-direction; the fluid equations may then be 
written 

(2) 1 (u, 0 ,  w )  = (q5.z; q5,u; $,A' 
VZq5 = 0, 

p = const. -pGy - *p(u2 + v 2  + w2)  - P $ , ~ ,  

where subscripts have been used to indicate partial differentiation. 
The first problem considered is that of small two-dimensional disturbances 

superimposed on the discontinuous steady-flow profile pictured in figure 1 ( d ) .  
Region a (i.e. the region 0 < y < 1; a for above) has constant density pa = 1, 
region b (y < 0;  b for below) has constant density pa, and the region y > 1 has 
negligibly small density. In  the absence of disturbances, the fluid in region a 
is a t  rest, while that in region b is moving to the left with constant velocity 
unity. 

If #a and $b denote the velocity potentials in regions a and b, and y = ~ ( z ,  t )  
and y = 1 + $(x, t) the equations of lower and upper interfaces, where 7 and 6 
are the result of small disturbances, and if sinusoidal x-dependence is assumed, 
it is found that 

where and $b have already been required to obey Laplace's equation, and q5b 
has been required to remain bounded as y -+ -a. The constants a,, a2, ..., a5 
are assumed to be small. The parameter a! is the wave-number of the disturbance, 
Re (c) the phase velocity, and a I m  (c) the growth rate. A disturbance grows, 
decays or remains of the same magnitude according as Im(c) is found to be 
greater than 0, less than 0, or equal to 0. 

The conditions that remain to be satisfied are continuity of pressure and normal 
velocity at the interfaces, and compatibility between the interface equations 
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and the velocity potentials. If we neglect second and higher powers of small 
quantities, these conditions yield the equations 

Substituting equations ( 2 )  and (3) into equations (4) and again neglecting higher- 
order terms, we have 

(5) 

as+i(c+l)a,  = 0, 

a,-aa,+ica4 = 0, 

eual - e-aa2 + ica, = 0, 

iaca, + iaca2 - iapb(c + 1 )  a3 + (pb - 1 )  Ga4 = 0, 

iaceaal + iace-aa2 - Ga, = 0, J 

which are 5 linear homogeneous equations in a,, a2, as, a,, a,. The condition for 
a non-trivial solution is that the determinant be zero, which yields the eigenvalue 
equation 

The roots of this quartic in c are the desired eigenvalues. An obvious approach 
for large values of a is to use a perturbation series in e-za, whereby the expansion 

c = ... (7) 

is substituted into (6) and coefficients of like powers of e--2a are equated to zero 
in order to evaluate co, c2, etc. The leading coefficient co is found (by merely 
omitting the second term in (6)) to be 

The root of interest is of course the one with positive imaginary part: 

' 0  = (pb + l>-l{ -pb + i[pb -, 1 gh (d - l)]L) * 

The next step yields 

The approximation co + c2 e-2a was found to give good accuracy for all a > 1. 
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For smaller values of a, numerical methods were used to obtain solutions of 
the eigenvalue equation. Both the quadratic factor method and the complex 
Birge-Vieta method (Kunz 1957) were tried, and found to be equally satis- 
factory and equally simple to programme for machine solution. In  both methods 
minor inconvenience was caused by the difficulty of finding initial approxima- 
tions sufficiently accurate for the iterative method to converge, when operating 
in the immediate neighbourhood of a double root; however, simple and crude 
provisions in the programme easily cope with such difficulties. 

Because of the nature of the physical problems of interest, consideration was 
limited to density ratios in the range 

1.00 < p b  < 1-06. 

For P b  in this range, (6) was found to have either 4 real roots, or 2 real roots and 
a complex conjugate pair of roots. Thus at most one of the four disturbance 
modes is unstable (i.e. has Imc > 0).  The major result is shown on figure 2 (a) ,  
where the horizontal co-ordinate is a and the vertical co-ordinate G-4 = U/(gh)k 
(chosen because it is directly proportional to U). The relevant curves are labelled 
‘discontinuous profile ’; these are neutral stability curves, and are loci of double 
roots of (6), which has only real roots in the region below. Thus unstable dis- 
turbance modes exist only at points above these curves. Curves are given for 
three typical density ratios P b / p a  = 1.06, 1.04 and 1.02, and are seen to become 
lower as the density ratio decreases. The neutral stability curve for pb/pa = 1.00 
is simply the horizontal axis, i.e. an unstable disturbance mode then exists for 
any pair of values (a, G ) .  

Now physically a problem is characterized by the two parameters G and Pb/Pa;  

an initial value problem must be solved by Fourier synthesis, i.e. by superposing 
appropriate amounts of the four modes for various values of wave-number a. 
In  practice it must be assumed that small disturbances of all wavelengths are 
present. Thus we see from figure 2 (a)  that the discontinuous profile is physically 
unstable for any U, due to the unlimited instability at high wave-numbers a, 
a well-known property of Helmholtz instability of flow profiles which have dis- 
continuities. This objectionable feature is not found in the next model con- 
sidered (figure 1 (c)), where the distributed shear provides a mechanism for 
stabilizing the situation at high wave-numbers. 

In  every unstable case, the value of Re (c) was found to imply that the dis- 
turbance had phase velocity between 0 and U, in the direction of the steady flow. 
The disturbance does not have a travelling wave character, but is convected at 
some velocity intermediate between the velocities of the streams above and 
below the interface at y = 0. (This remark also applies to the calculations for the 
shear-layer profile, figure 1 (c), discussed later.) 

It is of some interest to look at the effect of varying the layer thickness h, 
while holding other physical parameters constant. Some trivial manipulation 
is required, since h has been used freely in putting the problem into dimensionless 
form. We wish now to hold U ,  and dimensional wave-number a/h constant 
(therefore a will vary in proportion to h), and look at the dimensional growth 
rate (aU/h)  Im c, as we vary h. We desire a plot of results in which the effect of 
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a+ 
FIGURE 2a. Neutral stability curves. The regions of instability are: for the discontinuoua 
profile, everywhere above the neutral stability curve; for the shear-layer profile, only the 
cross-hatched region. In  the dotted region onset of instability in a flume was observed, 
with density ratios in the range 1.00 < p,/pa < 1.01. 

0 
a+ 

FIGURE 2 b. Neutral stability curves: same data as figure 2a, plotted against the reciprocal 
ordinate Q* = (gh)*/U. The regions of instability are: for the discontinuous profile, every- 
where below the neutral stability curve; for the shear-layer profile, only the cross-hatched 
region. 
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varying h is isolated in the horizontal co-ordinate a (to which it is proportional 
in the process described above). Therefore we choose as vertical co-ordinate the 

1.6- 

forcing parameter 

pslp, = 1.02 
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The results are shown in figure 3, for the typical density ratio pb/,oa = 1.02. 
At large a, exponentially small terms in the eigenvalue equation can be neglected, 
and the result factors into two quadratics, with roots given by (8). This reflects 
the physical fact that at large a the wavelength 2nh/oc is much less than the layer 
thickness h, and the two interfaces do not interact appreciably. The first pair of 
roots in (8) correspond to surface waves at the upper interface, which die out 
in a few wavelengths away from the interface. The second pair correspond to a 
disturbance centred about the lower interface, which has a wave character if 
(pg - 1) > @pb,  and otherwise a growing character. This is simply the classical 
Helmholtz instability situation for the interface between two fluids of unlimited 
extent. 

As a is reduced from large values, the unstable mode will begin to involve 
appreciable motion a t  the upper interface. This might be expected on physical 
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grounds to have a stabilizing influence, and we see from figure 3 that this is 
indeed true, since the Im$ = const. lines rise as a is reduced. The anomalous 
lowering of the Im$ = 0 (neutral stability) curve is not explained by this 
physical argument.? 

At  small h ascending power series in a are of interest. Again it is appropriate 
to replace c and G/a in (6) by g5 and 8, given by equations (10) and (11). At a = 0 
the result simplifies to 

44+20$3+(02-1)g52= 0, 

so that $ = 0, 0, - 8 k 1 ,  

where the last two correspond to gravity waves. One of the zero roots corre- 
sponds to the potentially unstable mode; thus, by setting 

$ = E = small 

and neglecting higher powers of s and a, it is found that 

s 2 p  - 11 - 28as - [82 + p;l- 11 a = 0 

ea p a 2  + (02 - 1) 182 +,p - 11 aja 
(anticipating that 8 2  + pcl -  1 will be of order a in the region of interest). Therefore 

e=-- 
82-  1 

and thus the neutral stability curve is given for small a by 

a = (8-2- 1) (e2+p+ 1). (12) 

This is found to correspond closely to the numerical results for a < 0.3. In  
particular, (12) shows that at a = 0 the neutral stability point occurs a t  

8 = (1 - p r y .  

3. Shear-layer profile calculations and results 
The second problem considered, which perhaps corresponds more closely to 

situations experienced in nature, is that of small disturbances superimposed on 
the flow of figure 1 (c) .  The analysis can be carried out in the same fashion as in 
the preceding problem, i.e. by defining a separate potential for each layer and 

t The referee has kindly pointed out the following argument to explain this situation : 
in the absence of the current U the dimensional surface wave speed is 

and similarly the speed of a wave at  the lower interface is 

(these may be derived as a special case of above results by substituting v = Uc in (6), 
and then setting U = 0).  Thus 8 is the ratio of U to the surface wave speed vl. However, 
since the instability a t  short wavelengths is principally associated with an internal wave, 
it may be more reasonable to plot results against the ordinate Ulv,, i.e. to compare U 
to the speed of an internal wave. And indeed, one find that Ulv, steadily increases on the 
neutral stability curve as u is decreased. 
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matching appropriately a t  interfaces;? however, we now prefer to follow a more 
general formulation. 

If we neglect viscosity and consider only small two-dimensional disturbances, 
the equations of motion are, in terms of the dimensionless variables of 
equations (l) ,  

1 (13) 

G’i 

P*x  - 
P1 

P 
P1 

u,t+ V(Y)U,,+ V’(y)v+ - - 0, 

v,,+ V ( y ) v , , + d  = - 

where quadratic terms in small quantities have been neglected, and total density 
has been denoted byp,in order to reserve thesymbolpfor theunperturbeddensity. 
The pressure is now eliminated by the usual process of cross-differentiation and 
subtraction (multiplying by pl, and taking the curl of the vector equation (13)). 

Now for the problems of interest it  is appropriate to take 

p1 = p(y) +p’(y) creia(x-ct); (14) 
thus the unperturbed density is a function only of y, and the perturbation in 
density, caused by the perturbation velocity, is taken proportional to p’(y), 
and with the same x and t dependence that will be assumed for the perturbation 
velocities. The incompressibility condition Dpl/Dt = 0 then implies that 

- I1 

which renders (14) kinematically compatible with the perturbation velocities. 
Using (14) to evaluatep,,, andp,,,, and again neglecting terms that are quadratic 
in small quantities, we have then 

Gp‘v 
v-c’ p’u, t + pu, t, + p’ T’u, + p vu, + p’ V’V + p V”V - pv , tx - p vv , zx = - - 

We now introduce a stream function Y, such that (u , v )  = (Y,v; -Y,,), 
thereby satisfying the continuity equation, and we assume YP to be of the form 

= $(y) ei&-ct). 

The resulting equation in #(y) may be written 

[pw“$)’]’ -a2Wp$ = __ Gp‘$ w = W(y) = V(y)-c. 
W ’  

This equation is related to the Orr-Sommerfeld equation (Lin 1955), the situa- 
tion having been simplified by neglecting viscosity but complicated by allowing 
for a variable density. 

Equation (15) is meaningless at points such as y = 0 where T”’ or p’ do not 
exist, and matching conditions must be derived for such points. Rewriting (15) as 

[P(w2($)’ -.$)I’ = -pG($)’ + a 2 p p $  

t Such an analysis was indeed used when this paper was originally submitted. The 
following more modern derivation was substituted at the suggestion of the referee; it is 
preferable in that it involves less algebra, and moreover is of much more general appfic- 
ability. Both approaches of course yield the same eigenvalue equation ((18) below). 
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and applying the operator 

1im]lei E+O P Y ?  

we see that the contents of the square bracket must be continuous at such points. 
A repetition of this argument shows that $/W must likewise be continuous, SO 

the required matching conditions are 

Q and - continuous. 
W 

Having thus formulated the problem in general, we now consider the special 
case of the shear-layer profile (figure 1 ( c ) ) .  Equation (15) reduces to 

$" -aZ$ = 0 

in the layers of constant p and W', and we can write the solution as 

(17) Q = aI e-a lvl +a e-a k--11 
2 

where the second of conditions (16) has been met, and $ has been required to 
remain bounded as y -+ -a. Two matching conditions remain to be satisfied, 
namely that the first quantity in (16) be continuous at y = 0 and at y = 1. This 
yields two homogeneous equations in a, and a2, and the determinant must be 
zero for a non-trivial solution, giving the eigenvalue equation 

1 C G  
a a  a a  

(pa + 1) c2- - - -(pa - 1) 

Roots of this quartic were extracted numerically, using the quadratic factor 
method (Kunz 1957). Again either no root or one root was found to have positive 
imaginary part and hence to correspond to an unstable disturbance mode. The 
results are shown in figures 2 (a)  and 2 (b). 

Analytic results of some interest are available for large a. Again expanding 
c as a series in e-za as in (7), we find that 

i 1 
2a 1 1 -- [ l?  (1 + 4aG}h], 

The expressions whose roots are taken are intrinsically positive, so to this degree 
of approximation complex eigenvalues are not found (the correction cze-2a is 
required to yield a complex approximation). However, double roots can exist, 
when the first and third of the values (19) are equal, i.e. if 

(20)  

This is a line in the (a, G-*)-plane, which appears as thelong thin tail at large a in 
figures 2 (a)  and 2 ( b ) ;  inclusion of the e-za terms opens this line up into a region, 

( P b  + 1) [2a - 1 - (1 + 4aG)*] = 1 + (1 + 4(pi - 1) (?a)*. 



Stability of flow over a slightly heavier jluid 203 

very narrow at large a, where a complex conjugate pair of roots exists, with 
imaginary part exponentially small in a. Equation (20) gives the location of this 
tail accurately for a > 3. Ifpb = 1, (20) reduces to 

3 
G = a-2+- 

401’ 

with similar results for pb near unity. At large a, the curve is asymptotically 

(Another locus of double roots is obtained by equating the first and fourth roots 
of (19); however, such double roots are found to be split into a pair of real roots 
by inclusion of the e-2ar terms.) 

4. Discussion of shear-layer profile results 
Figure 2 (a )  shows the neutral stability curve in the (G-* = U/(gh)*, a)-plane; 

points in the enclosed region correspond to unstable disturbance modes. Con- 
sider what happens as one moves along a horizontal (G = constant) line in this 
plane. This corresponds to holding the physical situation constant (U, h, etc., 
fixed) and increasing the disturbance wave-number a/h, i.e. decreasing the wave- 
length A = 2nh/a. At low a the situation is stable, because of the presence of the 
upper air-water interface. Then as the neutral stability curve is crossed it 
becomes unstable, due to the phenomenon called Helmholtz instability. The 
discontinuous profile remains unstable, but the shear-layer profile exhibits a 
return to stability and the neutral stability curve is crossed a second time; thus 
only a finite band of wave-numbers are unstable. This agrees with other results 
(Lin 1955; Esch 1957), which show that high wave-number disturbances, which 
have small wavelength and therefore can be considered to be localized within 
a small region in the y-direction, are stable in simple shear flow (Couette flow) 
or in the neighbourhood of a discontinuity in derivative such as that of the 
shear-layer profile. 

Figure 2 ( b )  merely repeats the same information in terms of the reciprocal 
vertical co-ordinate G* = (gh)*/U, to show more clearly the situation at small G. 
In  particular the shear-layer neutral stability curve intersects the # = 0 axis at 
about a = 1.8 for density ratios near unity, so that all wave-numbers a < 1.8 
are unstable at G = 0. 

Figures 4 (a )  and 4 (b)  show growth rates as a function of G-4 for various values 
of a, and correspond to traverses along vertical lines in figure 2 (a). In  figure 4 (a )  
values of P b  less than one are included, and are seen to result in unstable dis- 
turbancesat and near U/(gh)* = 0. Thiseffect, called Taylorinstability, is strongly 
dependent on pa, and disappears when Pb > 1, i.e. when the situation is statically 
stable. 

The upper region of instability, however, corresponds to instability of the 
Helmholtz type, and remains present for > 1, being in fact surprisingly in- 
sensitive to changes of pa. An increase in pushes this region to slightly higher 
values of G-* (see figures 4 (a )  and 4 ( b ) ) ,  and thus has a slight stabilizing influence, 
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but so little that the unstable region shown in figure 2 for pa = 1-02 is approxi- 
mately correct for all density ratios in the range 1.00 < pb < 1-06. The physical 
conclusion indicated is that the stabilizing influence of the density difference at 
the lower interface is relatively unimportant. This is in striking contrast to the 
discontinuous profile, where the influence of p h  is of essential importance, and 
all stability is lost if pb < 1. 
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FIGURE 4b. Growth-rate curves for shear-layer profile, with various values of a. 
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At first sight figure 4 (a)  might seem to indicate that increasing U above zero, 
i.e. introducing the shearing current, might actually have a stabilizing influence, 
until it is remembered that disturbances of all wave-numbers must be considered. 
An increase in U results in lowering the wave-number and increasing the growth 
rate of the most unstable disturbance. 

Now let us consider the question of a critical stream velocity, i.e. a value of 
U below which unstable disturbances do not occur a t  any wavelength. The 
unstable region has been seen to have a thin tail that extends to large a and small 
G-4 in an exponentially decreasing manner. Several justifications can be 
advanced for cutting off this tail at some point. At large a the growth rates 
become negligibly small (see figure 4 ( b ) ) ;  furthermore, the disturbances in 
question have short wavelength, and thus do not result in real mixing between 
the moving and still layers of fluid. But these arguments are probably unneces- 
sary, as the inclusion of viscosity in the analysis would probably suffice to remove 
the instability; it is well known (Lamb 1945; Bellman & Pennington 1954) that 
the stabilizing effects of viscosity increase with disturbance wave-number, 
because the amount of shearing motion involved in a sinusoidal disturbance 
increases as the wavelength decreases. 

Looking at figure 4(b) then, a cut-off somewhere in the region 4 < a < 6 
might be anticipated. Certainly the unstable disturbances at a = 9 will be 
unimportant, their growth rate being a factor of 10,000 less than those at a = 2. 
If this reasoning is correct, we can deduce (see figure 2) a critical stream velocity, 

(21) 
given by 

For values of U/(gh)* below this we anticipate that there will be no important 
unstable disturbances, and the flow itself can therefore be called stable. As 
U/(gh)+ is increased, the first wave-numbers to become unstable are in the 
neighbourhood of a = 27rh/h = 4 to 6, so that the first disturbances which may 
be expected to appear have 

At higher values of U/(gh)t more violent disturbances of a larger scale are 
predicted. 

Even though, as we have argued, the shear-layer instability found at  large 
a almost certainly does not correspond to a real physical instability, it is an 
intriguing result, and it may be of interest to examine the nature of such dis- 
turbance modes. We see from (17) that a, and a2 are the amplitudes of disturbance 
components centred at y = 0 and y = 1, i.e. at the lower and upper interfaces 
respectively. I n  one sample unstable case, given by 

criticalG-) = U/(gh)* M 0.5 to 0.7. 

criticalh NN h to $h. (22) 

a = 5, pb = 1-02, U/(gh)* = 0.593, 

the relative amplitude of the two components is given by 

aJ.2 = - 0.012 - (0.331) i, 
so that # ( y )  = a[-(0.012$. i0 .331)e-PL~~~+e--a~~-1~] .  

As -+ 1 the lower interface component disappears, i.e. ~ a l ~ / ~ a 2 ~  + 0, but even 
for Pa only slightly removed from 1 (as in the above example) the disturbance 
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has a large amplitude a t  the lower interface. This situation holds at larger values 
of a, as may be shown by an approximate analysis valid at large a. Thus, even 
when a is large, so that the interfaces are separated by many wavelengths, we 
have a situation in which a surface wave at y = 1 and an internal wave at y = 0 
interact in such a manner that energy is extracted, at a very small rate, from the 
steady flow. 

5. Comparison with experimental results 
A small glass-walled flume was constructed, with width 3in., depth 29in. 

and effective length 2ft. Various amounts of salt were dissolved in a 2in. deep 
layer of water in the flume, to provide various density ratios, and ink was mixed 
in. After the layer had come to rest a stream of tap water was run over the top, 
at gradually increasing speed, passing fkt through a l f t .  section containing 
calming screens and a dam with sloping approach. 

In  this rather crude apparatus steady velocity profiles very like figure 1 (a )  
could be achieved (as judged by observation of particles suspended in the water), 
with layer thicknesses, 1-3 cm; velocities from 0 to 12 cmlsec could be achieved. 
Flows, however, were far from two-dimensional, due to the difficulty in obtaining 
sufficiently good inlet conditions and to the effects of the side walls of the flume. 

After initial small disturbances had quietened down, observation from the side 
showed a beautifully plane interface between inky water and clear water, the 
inky region below being completely motionless. Observation from above revealed 
that the velocity of the upper layer varied across the flume in a somewhat irregular 
manner. As the velocity was increased, a definite point was reached at which the 
plane interface began to be gently displaced by disturbances with a definite 
wavelength. At higher velocities the disturbances became rapidly more violent, 
soon mixing the two layers. 

The measured critical values of G-9, i.e. values at the onset of disturbances, 
were about 0.1 or 0.2, and the initial disturbances were observed to have wave- 
lengths in the neighbourhood of 2h. The uncertainty of these measurements was 
not due to any difficulty in identifying the point at which disturbances began, 
but rather to the difficulty of measuring U and h (which varied somewhat along 
the test section), and eliminating the effects of poor inlet conditions. 

The predicted insensitivity of the phenomenon to density ratio was clearly 
observed, the behaviour of the experiment being much the same whether one 
or twenty spoonfuls of salt were dissolved in the lower fluid. Only a very small 
density difference was necessary to allow the steady flow to become established 
(steady flows of this type are of course impossible without some density difference, 
because of the effects of viscosity). 

The Reynolds number R was always above 1000 at the onset of instability; 
furthermore, aR was always above 1000 for the disturbances of interest. Con- 
sequently we can anticipate that viscosity is important mainly through its 
effect on the steady-flow profile, and that the errors caused by neglect of viscous 
terms in the fluid equations for the disturbance are small (see remark in 
introduction). 

The measured critical wavelengths agree fairly well with the values predicted 
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by the shear-layer analysis, equation (22). However, the measured critical values 
of G-#, 0.1-0-2, are significantly less than the predicted value (21). The imperfect 
inlet conditions and three-dimensional character of the flow explain part of this 
difference; such difficulties are in part not the result of crude experimental 
technique but are inherent in flume experiments. Moreover, the experimental 
and ‘shear-layer ’ profiles are different, and should have somewhat different 
critical values of G-i. Since the steepness of the slope (amount of vorticity) 
is probably the important profile characteristic, we might expect the profile of 
figure 1 (a) to have stability characteristics bracketed by those of the ‘shear- 
layer’ and the ‘discontinuous’ profiles, figures 1 (b)  and 1 (c), and thus to have 
a neutral stability curve on figure 2 which lies between the two curves shown. 
The experimental evidence supports this prediction. 

6. Conclusions 
In  the problem considered, where a layer of water flows over a dead region, 

the stability or instability of the motion can be explained by the classical-analysis 
methods of Rayleigh. The important parameter is U/(gh)+, where U is current 
velocity and h is shear-layer width. This parameter has a critical value, probably 
between 0.2 and 0.7, and stable flows can persist if it  is below this critical value. 
At the onset of instability, disturbancesof wavelength about h or 2hare predicted; 
for higher values of U/(gh)* more violent disturbances of longer wavelength 
can be expected. 

There is reason to believe that the neutral, stability curves given in figures 2 (a) 
and 2 (b) for the two idealized profiles shown in figures 1 (b)  and 1 (c) represent 
bounds for the neutral stability curve corresponding to a ‘real’ profile, such as 
figure 1 (a). 

The insensitivity of the phenomenon to the difference between the densities 
of the two regions is of some practical interest. A steady flow of the type con- 
sidered can be established with only a very small density difference, such as 
results from minor temperature variations. Therefore such flow patterns may 
tend to form spontaneously even in a nearly homogeneous fluid, whenever the 
resulting values of U/(gh)+ are below the critical values. 

This work was partially supported by the Office of Naval Research, under 
contract N5ori-07634. Computer time was paid for by National Science 
Foundation grant No. NSF-G-4611. 
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